Homes and Efficiency Understanding How We Use Energy

Version 1, April 2007. Produced by the Free Range *Energy Beyond Oil* Project http://www.fraw.org.uk/ebo/ ebo@fraw.org.uk

Judging by the media, we might think that the greatest energy offender in the UK was our homes. This isn't the case: our homes only account for a small, but significant, part of national energy consumption. If we are to adapt to Peak Energy we must be able to put the true scale of household consumption into the context of total consumption, and then work to reduce it in the future.

Domestic Energy in Context

The government, environmental groups, and consequently the media, present household energy consumption as a great problem. It is, but only as one of the constituent parts of a far larger energy system.

Your personal share of average household consumption is a fifth to a third of your total energy use. In total, our homes represent about 30% of the energy supplied to the UK economy (see fig. 1). Whilst significant, the UK will never reduce its overall consumption just by focussing on housing and household uses.

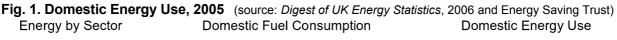
Our homes are reliant upon natural gas. This is storing up problems for the future as North Sea gas depletes and we become reliant upon imports. But again, the emphasis by the media on household electricity use is distorting the actual situation. Electricity only makes up (on average) a fifth of household fuel consumption – and only about 12% of the energy consumed in the home actually requires electricity (i.e, we can't substitute other fuel sources for that demand).

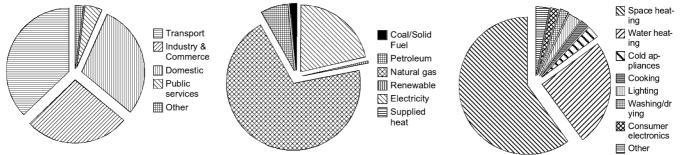
Finally, in terms of the our need for energy, about 85% of the energy used in the home is heat – for water and space heating. Of the rest, some of it is "high grade" (very hot) heat for cooking, and much of the rest is electricity for lighting and appliances. If we are devising solutions to Peak Energy it is important that we distinguish between our domestic *consumption* of energy with our *demand* for energy – although our homes consume gas, oil or power, the greatest problem we have to overcome is our use of heat. The remaining 10% to 15%, which is electricity, can be managed in many differing ways (most simply, *switch off!*).

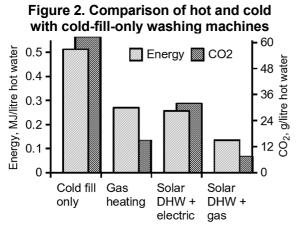
Domestic Efficiency

Home owners are urged to be more efficient in their

use of energy, by minimising the use of appliances or using the most efficient ones. But energy efficiency has important limitations: efficiency measures are a one-time saving – once carried out you can't repeat them; another problem, created by the *Second Law of Thermodynamics*, is that efficiency savings reduce with time – consequently the more efficient you are, the harder it is to improve. For these reasons, against a background of the growth in energy consumption, efficiency measures only work over the short-term, after which growth inflates consumption once again.


Sheet


10p


(where sold)

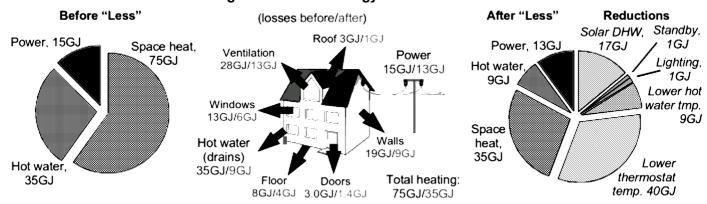
Consumers can buy the most efficient appliances by consulting the "energy label". Goods are assessed according to their energy performance and are then award a rating under a European scheme. However this system can be entirely misleading. Today we are offered a range of choices between different manufactured appliances, but due to building and design standards they are not necessarily the most efficient appliances possible – they're just the selection that are marketed to the consumer. In energy sustainability terms some of these standards make little sense.

For example, consider washing machines. Due to a recent decision by manufacturers nearly all "wet appliances" are now *cold-fill-only* – you cannot plumb them into your hot water system. If you have a solar hot water system the "green" hot water it produces is completely useless to wash your clothes with. Instead you must rely on the electricity grid for the energy to heat the water. This means that a new, *A*+ rated washing machine might use more primary energy, and emit more carbon dioxide, than an old machine. This is because it's more efficient to heat water in your home and feed a hot fill machine than produce electricity at the power station and heat the water with electricity.

This analysis is based upon the primary energy used/carbon dioxide emitted to heat one litre of water – all other factors are considered to be identical. "Solar DHW" is a solar thermal hot water system that provides half of the annual hot water supply, backed-up with either gas or electricity.

Clearly, if the objective of the energy labelling system is to decrease primary energy consumption and the emission of carbon dioxide, the failure to effectively measure the introduction of cold-fill-only wet appliances is a retrograde step.

Energy Descent in the Home


Domestic energy efficiency solutions are ultimately limited, and given the information available to the consumer, arbitrary. For this reason the only viable approach we can take in the home is to reduce the demand for energy. There are three ways to do this: to reduce losses through better thermal insulation; offsetting energy supply with on-site production; and to contract energy use.

Reducing losses traditionally implies improving insulation. However it takes energy to manufacture insulation, and depending upon the type of insulation material, and the distance it is transported, even relatively thin sections of insulating material can take more energy to manufacture and transport than they will save over their life (for example, with plastic foams – such as polystyrene – the thickness at which you use more energy than it saves can be as little as 10cm to 12cm). Also reducing losses through retrofitting is only minimally effective. To make a significant saving you have to partially dismantle the house and rebuild it, which again takes energy, and on the national scale, a lot of time (there are over 24 million homes in Britain).

On-site production has more recently, with photovoltaic (PV) panels or small wind turbines, become fashionable. But as noted earlier, most household demand is for heat, not power. For these reasons solar thermal (hot water) or ground source heat pumps meet our needs far more effectively than PV or wind turbines. Also, for each £1 spent, solar thermal will produce 30 to 40 times more energy than solar PV.

To be realistic energy production must include some element of storage, otherwise it is not really effective. For example, most of the PV and small wind turbines that are for sale today will not produce power if your mains supply is cut (battery storage is possible for power-producing renewables, but it is more expensive). Heat storage is also possible, but it can require a lot of building work to install it in the home.

The most practical solution is to reduce consumption. The energy losses in the home are proportional to the difference between the internal and external temperature. As we reduce the internal temperature the energy consumed will therefore fall significantly – at least 10% for each degree (for the first few degrees). Just by reducing the temperature of the space and water heating it is possible to save almost half of household consumption. Other minor changes, such as solar domestic hot water (DHW) systems, can save another 10% to 20% without any significant building work. Then, rather than use energy to heat the whole house, you employ the most efficient means to keep yourself warm... *wear sensible clothes!*

Fig. 3. Household energy use and reduction

This example takes a detached house and projects how energy consumption can be cut without any significant building work/insulation. The greatest savings are achieved by reducing the average internal temperature of the house from the "average" 21°C down to an average 16°C (an "average 16°C" because you only heat the rooms regularly used to around 18°C in the daytime, rather than the whole house with central heating), and reducing the hot water temperature from the average 70°C down to 55°C. This reduces consumption by around 40%. A solar domestic hot water (DHW) system saves a further 14%. Finally, and by comparison, using low energy lights and removing standby devices only saves 2% to 4%!

This briefing was produced for the "UK Peak Energy Tour", 2007 – see http://www.fraw.org.uk/ebo/ for information. © Copyright 2007 Paul Mobbs/The Free Range Network. Permission is granted to copy, distribute and/or modify this work under the terms of the Creative Commons Non-Commercial Share Alike License. A full copy of the license is provided on-line at – http://www.fraw.org.uk/fraw_admin/copyright.shtml.